Date | Owner | Revision | Notes |
| Firas Abd El Gani | 1.0 | |
Table of Contents |
Introduction
Welcome to our comprehensive user manual designed to assist you in developing a custom NIO board for use with our cutting-edge System on Module (SoM), which incorporates one of several high-performance AMD Ryzen™ processors. This manual is tailored specifically for hardware engineers looking to leverage the robust capabilities of the following AMD Ryzen™ processor models in their designs:
Ryzen Embedded 8000 Series - Product Stack
Our SoM offers a versatile foundation for a wide array of applications, from complex industrial PCs to sophisticated multimedia systems. By selecting our module, you will benefit from the remarkable performance, efficiency, and integrated features of AMD Ryzen™ processors, coupled with the flexibility and scalability essential for modern electronic design.
This manual will guide you through the key aspects of integrating our SoM into your custom NIO design. It covers essential design considerations, including power requirements, signal integrity, thermal management, and connectivity options, ensuring you can fully harness the power of the AMD Ryzen™ processor in your specific application.
Each section of this manual provides detailed information and technical specifications to help you understand the interfaces, pinouts, and schematic design principles necessary for successful integration. Additionally, we provide best practices and expert tips to mitigate common design challenges and optimize your development process.
We encourage you to use this manual as a resource for your design journey, enabling you to create innovative and effective solutions that leverage our powerful and flexible SoM platform. Whether you are designing for demanding industrial environments or for consumer electronics, this manual is your gateway to developing a successful product with our System on Module.
Thank you for choosing our technology. We look forward to seeing the exceptional solutions you will build.
Bedrock SOM Block Diagram
Please note that Port 9 (Lanes: 17-20) are used for the SoM’s Internal NVME.
Feature Summary:
Memory: DDR5 Dual 64BG Channels, Support Up to DDR5-5600.
USB:
2x USB4 (40 Gbps) - Supports USB-C Alt-Mode.
2x USB 3.2 Gen2 (10 Gbps).
4x USB2.0Display:
• DisplayPort 0 (DP0) : eDP/DP/HDMI
• DisplayPort 1 (DP1) : eDP/DP/HDMI
• DisplayPort 2 (DP2, USBC0) : DP/HDMI; or USB-C with DP alt mode; or USB4
• DisplayPort 3 (DP3, USBC1) : DP/HDMI; or USB-C with DP alt mode; or USB4
• DisplayPort 4 (DP4, USBC4) : DP/HDMI; or USB-C with DP alt mode
Note: Maximum 4 displays can be outputted simultaneously.PCIe: 9 ports, 16 Lanes PCIe Gen 4.
Power: DC 12V-24V.
Dimentions (83 mm x 91 mm x 12.7 mm) - Including SODIMM Modules.
UART: 4 Ports.
SPI: Yes.
eSPI: Yes.
I2C: 2 Ports.
BIOS: AMI Aptio V
AMD Ryzen™ 8040 Series Processors
We are excited to announce that AMD has recently launched the new Ryzen™ 8040 Series processors, representing the latest advancement in their mobile PC processor technology. As a pioneer in the industry, SolidRun is proud to be the first to integrate this cutting-edge processor series into a fanless industrial PC. This milestone underscores our commitment to leading the market by adopting innovative technologies that enhance the performance and reliability of our products.
Introduction to the Ryzen™ 8040 Series
The Ryzen™ 8040 Series processors build upon the foundation set by the previous 7040 Series, introducing several key enhancements that significantly improve performance, power efficiency, and connectivity. Based on the latest AMD technology, this series is designed to meet the demanding needs of modern applications, from enhanced multimedia capabilities to robust enterprise solutions.
Key Features of the Ryzen™ 8040 Series
AI Processing Power: The 8040 Series features an integrated Neural Processing Unit (NPU) on select models which offers up to 1.6 times more AI processing performance compared to the previous models. This enhancement enables larger AI model handling directly on the device, facilitating more complex and real-time AI user experiences.
Processor Architecture and Performance: Built on the AMD "Zen 4" architecture, the 8040 Series processors can have up to eight cores, capable of delivering up to 16 threads of processing power. Notable models like the Ryzen 9 8945HS provide significantly enhanced performance metrics—up to 64% faster video editing and up to 37% faster 3D rendering compared to competitors. These processors also feature advanced RDNA 3 architecture-based Radeon graphics for superior gaming and creative performance.
Power Efficiency and Support for Advanced Memory: The 8040 Series supports advanced LPDDR5 memory, which contributes to its ability to manage high-demand applications more efficiently while also ensuring longer battery life through innovative power management features. This is especially beneficial for ultrathin laptops where power efficiency is crucial.
Enhanced Connectivity and Features: These processors are designed to leverage the full range of the Windows 11 ecosystem for optimized performance, including comprehensive support for the latest security features and AI-enhanced applications provided by Windows. Features like background blur, eye gaze tracking, and noise cancellation are now accessible out-of-the-box on systems with these processors.
Software Ecosystem and Developer Support: AMD has also introduced Ryzen AI 1.0 Software alongside the 8040 Series. This software stack makes it easier for developers to deploy machine learning models trained in frameworks like PyTorch or TensorFlow, which can run efficiently on these processors.
Mechanical Files
SoM Board Dimensions: 83 x 75.76 mm (Top View):
Mechanical Files Download Links:
Bedrock SOM - Assembly Files.zip
Bedrock SOM - Mechanical Files.zip
Bedrock R7000 Basic Block Diagram
Bedrock Cartridge
As part of developing a custom extension board for the Bedrock SOM, it’s recommended to take a look at the Bedrock Cartridge which is used in Bedrock PC.
SOM Board-to-Board Connectors - MFG P/N
Connector RefDes on Bedrock SoM | MFG P/N | Connector RefDes on NIO | MFG P/N |
---|---|---|---|
J1 | DF40C-100DP-0.4V(51) | J5 | DF40C-100DS-0.4V(51) |
J2 | DF40C-100DP-0.4V(51) | J6 | DF40C-100DS-0.4V(51) |
J3 | DF40C-100DP-0.4V(51) | J4 | DF40C-100DS-0.4V(51) |
J4 | DF40C-80DP-0.4V(51) | J7 | DF40C-80DS-0.4V(51) |
Bedrock SoM Connectors (Males):
NIO Connectors (Females):
Note: Top Side of SoM is placed on Top Side of NIO, where the two boards are flipped one towards the other.
Board-to-board Connectors Pin-out
The following is an example of the B2B pinout in NIO.
Please note that the pinout relates to the female connectors on a carrier, to which the Bedrock SoM male Connectors are inserted, and here we gave an example for SolidRun NIO Connectors (J4, J5, J6, J7). It’s important to be careful which pin is number #1.
NIO R7000 Basic pinout
J5 | Pin# | J6 | Pin# | J4 | Pin# | J7 | Pin# |
---|---|---|---|---|---|---|---|
VDDBT_RTC | J5-93 | DP3_AUXN/USBC1_SBTX | J6-62 | DP2_HPD | J4-79 | VIN_ALW | J7-64 |
48M_OSC | J5-77 | DP3_AUXP/USBC1_SBRX | J6-60 | DP3_HPD | J4-85 | VIN_ALW | J7-72 |
ACP_WOV_DMIC_CLK | J5-91 | GFX_CLKN_R | J6-23 | DP4_AUXN | J4-81 | VIN_ALW | J7-80 |
ACP_WOV_DMIC_DAT0 | J5-95 | GFX_CLKP_R | J6-25 | DP4_AUXP | J4-83 | VIN_ALW | J7-69 |
AC_PRES | J5-26 | GFX_SLOT_RX0N | J6-53 | DP4_HPD | J4-87 | VIN_ALW | J7-77 |
AGPIO11_MDIO3_SDA | J5-55 | GFX_SLOT_RX0P | J6-55 | USBC0_DN | J4-48 | VIN_ALW | J7-66 |
AGPIO17 | J5-86 | GFX_SLOT_RX1N | J6-59 | USBC0_DP | J4-46 | VIN_ALW | J7-74 |
AGPIO18 | J5-78 | GFX_SLOT_RX1P | J6-61 | USBC0_NOVA_RXAN | J4-40 | VIN_ALW | J7-63 |
AGPIO21 | J5-1 | GFX_SLOT_RX2N | J6-65 | USBC0_NOVA_RXAP | J4-42 | VIN_ALW | J7-71 |
AGPIO22 | J5-34 | GFX_SLOT_RX2P | J6-67 | USBC0_NOVA_RXBN | J4-52 | VIN_ALW | J7-79 |
AGPIO24 | J5-58 | GFX_SLOT_RX3N | J6-71 | USBC0_NOVA_RXBP | J4-54 | VIN_ALW | J7-68 |
AGPIO3 | J5-53 | GFX_SLOT_RX3P | J6-73 | USBC0_NOVA_TXAN | J4-47 | VIN_ALW | J7-76 |
AGPIO32 | J5-83 | GFX_SLOT_RX4N | J6-77 | USBC0_NOVA_TXAP | J4-45 | VIN_ALW | J7-65 |
AGPIO4 | J5-28 | GFX_SLOT_RX4P | J6-79 | USBC0_NOVA_TXBN | J4-51 | VIN_ALW | J7-73 |
AGPIO89 | J5-43 | GFX_SLOT_RX5N | J6-83 | USBC0_NOVA_TXBP | J4-53 | VIN_ALW | J7-70 |
AGPIO90 | J5-21 | GFX_SLOT_RX5P | J6-85 | USBC1_DN | J4-66 | VIN_ALW | J7-78 |
APU_ALERT# | J5-72 | GFX_SLOT_RX6N | J6-89 | USBC1_DP | J4-64 | VIN_ALW | J7-67 |
APU_I2C0_SCL_1V8 | J5-11 | GFX_SLOT_RX6P | J6-91 | USBC1_RXAN | J4-60 | VIN_ALW | J7-75 |
APU_I2C0_SDA_1V8 | J5-9 | GFX_SLOT_RX7N | J6-95 | USBC1_RXAP | J4-58 | ACP_WOV_DMIC_DAT1 | J7-48 |
APU_I2C1_SCL_1V8 | J5-13 | GFX_SLOT_RX7P | J6-97 | USBC1_RXBN | J4-72 | ACP_WOV_DMIC_DAT2 | J7-42 |
APU_I2C1_SDA_1V8 | J5-27 | GFX_SLOT_TX0N_C | J6-6 | USBC1_RXBP | J4-70 | ACP_WOV_DMIC_DAT3 | J7-56 |
APU_PROCHOT# | J5-81 | GFX_SLOT_TX0P_C | J6-8 | USBC1_TXAN | J4-57 | AZ_BITLK/SW1_MCLK/TDM0_BCLK_HDR | J7-44 |
APU_RST# | J5-74 | GFX_SLOT_TX1N_C | J6-18 | USBC1_TXAP | J4-59 | CONF_4 | J7-36 |
APU_SCLK0_1V8 | J5-19 | GFX_SLOT_TX1P_C | J6-20 | USBC1_TXBN | J4-63 | CONF_5 | J7-6 |
APU_SCLK1_1V8 | J5-37 | GFX_SLOT_TX2N_C | J6-30 | USBC1_TXBP | J4-65 | DOUT_BT_HDR | J7-52 |
APU_SDATA0_1V8 | J5-17 | GFX_SLOT_TX2P_C | J6-32 | USBC4_DN | J4-92 | GPP_CLK5N_R | J7-41 |
APU_SDATA1_1V8 | J5-39 | GFX_SLOT_TX3N_C | J6-42 | USBC4_DP | J4-90 | GPP_CLK5P_R | J7-39 |
APU_SFH_SCL | J5-67 | GFX_SLOT_TX3P_C | J6-44 | USBC4_SS+_RXAN | J4-86 | GPP_CLK6N_R | J7-45 |
APU_SFH_SDA | J5-38 | GFX_SLOT_TX4N | J6-54 | USBC4_SS+_RXAP | J4-84 | GPP_CLK6P_R | J7-47 |
APU_SIC | J5-82 | GFX_SLOT_TX4P | J6-56 | USBC4_SS+_RXBN | J4-96 | GPP_RX10N | J7-10 |
APU_SID | J5-90 | GFX_SLOT_TX5N | J6-66 | USBC4_SS+_RXBP | J4-98 | GPP_RX10P | J7-12 |
APU_THERMTRIP# | J5-15 | GFX_SLOT_TX5P | J6-68 | USBC4_SS+_TXAN | J4-69 | GPP_RX11N | J7-33 |
AZ_RST#/SW0_MDATA1/TDM0_DIN_HDR | J5-84 | GFX_SLOT_TX6N | J6-78 | USBC4_SS+_TXAP | J4-71 | GPP_RX11P | J7-35 |
AZ_SDIN0/SW0_MDATA3_HDR | J5-64 | GFX_SLOT_TX6P | J6-80 | USBC4_SS+_TXBN | J4-75 | GPP_RX12N | J7-5 |
AZ_SDIN1/SW0_MCLK_TDM1_BCLK_HDR | J5-89 | GFX_SLOT_TX7N | J6-90 | USBC4_SS+_TXBP | J4-77 | GPP_RX12P | J7-3 |
AZ_SDIN2/SW0_MDATA0/TDM1_OUT_HDR | J5-66 | GFX_SLOT_TX7P | J6-92 | USBN3 | J4-89 | GPP_TX10N | J7-11 |
AZ_SDOUT/SW0_MDATA2/TDM0_DOUT_HDR | J5-98 | GPP_CLK1N_R | J6-29 | USBN6 | J4-95 | GPP_TX10P | J7-9 |
AZ_SYNC/SW1_MDATA0/TDM0_FRM_HDR | J5-100 | GPP_CLK1P_R | J6-31 | USBN7 | J4-99 | GPP_TX11N | J7-17 |
CONF_1 | J5-92 | GPP_CLK2N_R | J6-35 | USBP3 | J4-91 | GPP_TX11P | J7-15 |
CONF_2 | J5-61 | GPP_CLK2P_R | J6-37 | USBP6 | J4-93 | GPP_TX12N_C | J7-21 |
CONF_3 | J5-97 | GPP_CLK3N_R | J6-48 | USBP7 | J4-97 | GPP_TX12P_C | J7-23 |
CONF_6 | J5-85 | GPP_CLK3P_R | J6-50 | DP0_AUXN | J4-4 | INT_CLK_REQ3# | J7-38 |
DP_STERESOSYNC | J5-80 | GPP_RX13N | J6-17 | DP0_AUXP | J4-6 | LRCLK_BT_HDR | J7-54 |
EGPIO67 | J5-3 | GPP_RX13P | J6-19 | DP0_BLON | J4-35 | RTC_CLK2_R | J7-40 |
EGPIO74 | J5-7 | GPP_RX14N | J6-11 | DP0_BLPWM | J4-39 | SDIN_BT_HDR | J7-50 |
EGPIO76 | J5-5 | GPP_RX14P | J6-13 | DP0_DIGON | J4-37 | UART4_CTS# | J7-4 |
EGPIO78 | J5-35 | GPP_RX15N | J6-5 | DP0_HPD | J4-33 | UART4_INTR | J7-2 |
EGPIO79 | J5-8 | GPP_RX15P | J6-7 | DP0_TX0N | J4-10 | UART4_TXD | J7-34 |
ESPI_CLK_EC | J5-6 | GPP_RX8N | J6-47 | DP0_TX0P | J4-12 | USB5_SS+_RXN | J7-24 |
ESPI_DAT0_EC | J5-22 | GPP_RX8P | J6-49 | DP0_TX1N | J4-18 | USB5_SS+_RXP | J7-22 |
ESPI_DAT1_EC | J5-14 | GPP_RX9N | J6-41 | DP0_TX1P | J4-16 | USB5_SS+_TXN | J7-16 |
ESPI_DAT2_EC | J5-18 | GPP_RX9P | J6-43 | DP0_TX2N | J4-24 | USB5_SS+_TXP | J7-18 |
ESPI_DAT3_EC | J5-20 | GPP_TX13N_C | J6-36 | DP0_TX2P | J4-22 | USBC5_RX2N | J7-57 |
FANOUT0_1V8 | J5-47 | GPP_TX13P_C | J6-38 | DP0_TX3N | J4-28 | USBC5_RX2P | J7-59 |
FANTACH0_1V8 | J5-45 | GPP_TX14N | J6-24 | DP0_TX3P | J4-30 | USBC5_TX2N | J7-29 |
INTRUDER_ALERT | J5-50 | GPP_TX14P | J6-26 | DP1_AUXN | J4-9 | USBC5_TX2P | J7-27 |
INT_CLK_REQ0# | J5-46 | GPP_TX15N | J6-12 | DP1_AUXP | J4-11 | USBN2 | J7-30 |
INT_CLK_REQ1# | J5-44 | GPP_TX15P | J6-14 | DP1_BLON | J4-76 | USBN5 | J7-53 |
INT_CLK_REQ2# | J5-42 | GPP_TX8N | J6-96 | DP1_BLPWM | J4-80 | USBN6 | J4-95 |
INT_SENSOR_0 | J5-36 | GPP_TX8P | J6-98 | DP1_DIGON | J4-78 | USBP2 | J7-28 |
INT_SENSOR_1 | J5-65 | GPP_TX9N | J6-84 | DP1_HPD | J4-41 | USBP5 | J7-51 |
KR10G_PHY1_INTR#_1V8 | J5-32 | GPP_TX9P | J6-86 | DP1_TX0N | J4-5 | 3.3V_ALW_SOM | J7-58 |
M2_SSD0_LED# | J5-2 | SOM_ENABLE | J6-74 | DP1_TX0P | J4-3 | 3.3V_ALW_SOM | J7-60 |
MDIO0_SCL | J5-24 | DP1_TX1N | J4-17 | 3.3V_ALW_SOM | J7-62 | ||
MDIO0_SDA | J5-10 | DP1_TX1P | J4-15 | ||||
MDIO1_SCL | J5-40 | DP1_TX2N | J4-23 | ||||
MDIO1_SDA | J5-59 | DP1_TX2P | J4-21 | ||||
MDIO2_SCL | J5-68 | DP1_TX3N | J4-29 | ||||
MPM_EVENT# | J5-33 | DP1_TX3P | J4-27 | ||||
PCIE_RST# | J5-79 | DP2_AUXN/USBC0_SBTX | J4-36 | ||||
PCIE_RST1# | J5-31 | DP2_AUXP/USBC0_SBRX | J4-34 | ||||
PCIE_WAKE# | J5-49 | DP2_HPD | J4-79 | ||||
PWR_BTN# | J5-51 | DP3_HPD | J4-85 | ||||
SATA_ACT_1.8V# | J5-25 | DP4_AUXN | J4-81 | ||||
SENSOR_MISC1 | J5-57 | DP4_AUXP | J4-83 | ||||
SENSOR_MISC2 | J5-71 | DP4_HPD | J4-87 | ||||
SENSOR_MISC3 | J5-63 | ||||||
SENSOR_MISC4 | J5-69 | ||||||
SYS_RST# | J5-48 | ||||||
SYS_S0_PWR_EN | J5-12 | ||||||
SYS_S3_PWR_EN | J5-41 | ||||||
TMON_I2C_SCL | J5-54 | ||||||
TMON_I2C_SDA | J5-56 | ||||||
TPAD_INT# | J5-23 | ||||||
UART0_CTS# | J5-99 | ||||||
UART0_INTR | J5-94 | ||||||
UART0_RTS# | J5-96 | ||||||
UART0_RXD | J5-75 | ||||||
UART0_TXD | J5-73 | ||||||
UART2_TXD | J5-88 | ||||||
USBC_I2C_SCL | J5-62 | ||||||
USBC_I2C_SDA | J5-87 | ||||||
USBC_PD_INT | J5-52 | ||||||
USB_OCP# | J5-60 |
OrCad Symbols
In the following link you will find a PDF and OrCad Symbols for the NIO board-to-board connectors, to which the SoM (Male) Connectors are inserted:
Differential Signals Impedance
In this Excel, you will find a list for the impedance for each differential signal.
Note: All differential pairs are 90-Ohm, the rest are GPIOs/Single-Ended signals which are 50-Ohm by default.
Thermal Dissipation
Thermal grease on Cartrridge:
We apply thermal grease on certain spots in the Cartridge in order to cool down certain parts on the SoM, such as Inductors and ICs. we recommend placing the thermal grease (white) in the following places:Thermal paste on HeatSink and Thermal Pad on NVME:
The following bottom view of the SoM shows the recommended places for placing thermal paste (on the SoM’s heatsink (gray), in addition to thermal pad on the NVME (blue):
Power Consumption
SmartShift Technology for Optimized Power Management
One of the key features of our System on Module, integrated with AMD Ryzen™ processors, is the SmartShift technology. This innovative feature allows for dynamic adjustment of power allocation between the CPU and other system components. By intelligently shifting power where it's needed most, SmartShift enhances overall performance and efficiency, making it an ideal solution for power-sensitive applications.
Controlling CPU Power Consumption
With SmartShift, you can precisely control the power consumption of the CPU, tailoring it to fit the specific needs of your application. This capability is especially beneficial in scenarios where power efficiency is crucial, such as in portable or battery-operated devices. You can set a limit to the CPU power consumption, for example, capping it at a specific wattage to balance performance with power usage.
Configuring CPU Power Limits in BIOS
To configure the CPU power limits, you can access the BIOS settings of our System on Module. We provide a detailed guide on how to navigate these settings and effectively set the desired power caps for your application.
For step-by-step instructions on accessing and modifying these settings, please visit our detailed BIOS configuration page here: Bedrock V3000 BIOS Settings - Power Screen.
By leveraging the SmartShift technology and configuring your CPU power settings via BIOS, you can optimize your system’s performance and power consumption, leading to a more efficient and tailored usage according to your specific requirements. This section of the manual ensures that you have all the necessary tools and knowledge to take full advantage of the innovative features provided by our System on Module.
To demonstrate the efficacy and benefits of the SmartShift technology in our System on Module (SoM), extensive measurements have been conducted using a SoM based on the AMD Ryzen™ 7 7840HS processor paired with the Networking & I/O extension board (NIO). These tests were aimed at validating how effectively SmartShift manages power distribution under various operational conditions.
SmartShift Configuration Parameters:
The SmartShift feature is controlled through four key parameters in the BIOS Power tab, which allow for precise management of power distribution and consumption:
APU Only sPPT Limit: Sets the peak power limit that the Accelerated Processing Unit (APU) can consume.
Sustained Power Limit: Defines the sustained power threshold for long-term performance stability.
Fast PPT Limit: Regulates the rapid power allowance for short bursts of intensive processing.
Slow PPT Limit: Controls the lower power threshold, suitable for maintaining efficiency during less demanding tasks.
Measurement Results
The following table illustrates the power consumption results (in Watts) observed under various settings of these parameters. These measurements provide clear insights into how SmartShift adjusts power usage dynamically, ensuring optimal performance and efficiency across different workloads and operational states.
The tests outlined in the table above were conducted while the system was running CineBench R23, specifically utilizing the Multi-Core test mode. This benchmarking tool is widely recognized for its ability to stress multiple CPU cores simultaneously, making it an ideal platform for evaluating the performance of the SmartShift technology under high computational loads. By conducting the tests in this environment, we ensure that the measurements accurately reflect the capabilities of SmartShift to dynamically manage and optimize power consumption during intensive processing tasks.
Setting Description | APU only sPPT Limit (mW) | Sustained PowerLimit (SPL) (mW) | Fast PPT limit | Slow PPT Limit | Scope Measurment [Cinebench Multi]: Total Power [W] |
---|---|---|---|---|---|
Energy Saving | 5000 | 5000 | 5000 | 5000 | |
8000 | 8000 | 8000 | 8000 | ||
10000 | 10000 | 10000 | 10000 | ||
20000 | 20000 | 20000 | 20000 | ||
Balanced Performance | 30000 | 30000 | 30000 | 30000 | |
40000 | 40000 | 40000 | 40000 | ||
54000 | 54000 | 54000 | 54000 | ||
High Performance | 60000 | 60000 | 60000 | 60000 | |
65000 | 65000 | 65000 | 65000 | ||
70000 | 70000 | 70000 | 70000 | ||
75000 | 75000 | 75000 | 75000 | ||
80000 | 80000 | 80000 | 80000 | ||
90000 | 90000 | 90000 | 90000 |
Note: the measurements were performed with 19V input voltage.
Power Input
The recommended input range for the SoM is 12V-24V.
Note: there is no reverse polarity protection on the SoM, please be careful not to confuse between the “+” and “-” signs. (Red is Positive “+”, Black is Negative “-”)
SolidRun uses Molex 1053071202 Connector to interface between the SoM power input and the Phoenix Connecter.